Regulations Compliance Report

OK

OK

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.16 *Printed on 25 March 2019 at 14:45:46*

Project Information:

Assessed By: Aymon Winter (STRO014511) Building Type: Flat

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 67.15m²

Site Reference: 49-51 Beulah Hill Plot Reference: 01-19-73120 B-G-03 PL1

Address: B-G-03, 49-51 Beulah Hill Sada Unit Ref: B0-A9

Client Details:

Name: Sada Architecture

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 19.8 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 14.84 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 55.6 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 53.2 kWh/m²

2 Fabric U-values

Element Average Highest External wall 0.19 (max. 0.30) 0.26 (max. 0.70) OK Party wall 0.00 (max. 0.20) OK Floor 0.11 (max. 0.25) 0.11 (max. 0.70) OK Roof 0.14 (max. 0.20) 0.14 (max. 0.35) OK

2a Thermal bridging

Openings

Thermal bridging calculated from linear thermal transmittances for each junction

1.40 (max. 2.00)

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 440, product index 017558):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester

Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi)

Efficiency 89.1 % SEDBUK2009

Minimum 88.0 % OK

1.40 (max. 3.30)

Secondary heating system: None

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	Programmer, room therm	ostat and TRVs	ОК
Hot water controls:	No cylinder		
	No cylinder		
Boiler interlock:	Yes		OK
Low energy lights			
Percentage of fixed lights wit	h low-energy fittings	100.0%	
Minimum		75.0%	OK
Mechanical ventilation			
Continuous extract system			
Specific fan power:		0.15	
Maximum		0.7	OK
Summertime temperature			
Overheating risk (Thames va	alley):	High	Fail
sed on:			
Overshading:		Average or unknown	
Windows facing: South East		10.47m²	
Windows facing: South West	1	8.32m²	
Ventilation rate:		2.00	
Blinds/curtains:		Dark-coloured curtain or roller b	olind
		Closed 100% of daylight hours	
0 Key features		2.42.11/4.014	
External Walls U-value		0.13 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array			

Code for Sustainable Homes Report For use with Nov 2010 addendum 2014 England

Assessor and House Details

Assessor Name: Aymon Winter Assessor Number: STR0014511

Property Address: B-G-03

49-51 Beulah Hill

Building regulation assessment

kg/m²/year 19.8

TER 19.8 DER 14.84

ENE 1 Assessment - Dwelling Emission Rate

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		14.84	(ZC1)
TER		19.8	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		14.84	
% improvement DER/TER	25.1		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	14.84	(ZC1)
CO2 emissions from appliances, equation (L14)	16.46	(ZC2)
CO2 emissions from cooking, equation (L16)	2.36	(ZC3)
Net CO2 emissions	33.7	(ZC8)

Result:

Credits awarded for ENE 1 = 3.4

Code Level = 4

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 53.15 Credits awarded for ENE 2 = 0

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year
Standard Case CO2 emissions		41.43
Standard DER		22.13
Actual Case CO2 emissions		35.67
Actual DER		16.37

Reduction in CO2 emissions 13.9

Credits awarded for ENE 7 = 1

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
- Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Predicted Energy Assessment

B-G-03 49-51 Beulah Hill

Sada Unit Ref: B0-A9

Dwelling type: Date of assessment: Produced by: Total floor area: Ground floor Flat 12 March 2019 Aymon Winter 67.15 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 01-19-73120 B-G-03 PL1

Address: B-G-03, 49-51 Beulah Hill

Located in: England Region: Thames valley

UPRN:

Date of assessment:12 March 2019Date of certificate:25 March 2019

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

Water use <= 125 litres/person/day:

New dwelling
Unknown

No related party
Calculated 140

True

PCDF Version: 440

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2013

Floor Location: Floor area:

Floor 0 67.15 m^2 2.56 m

Living area: 28.05 m² (fraction 0.418)

Front of dwelling faces: North West

Opening types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
Front Door	Manufacturer	Solid			PVC-U
Rear Elev	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal
Side Elev	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
Front Door	mm	0.7	0	1.4	2.12	1
Rear Elev	16mm or more	0.8	0.4	1.4	10.47	1
Side Elev	16mm or more	0.8	0.4	1.4	8.32	1

Type-Name: Location: **Orient:** Width: **Height:** Name: Wall to Corridor North West Front Door Rear Elev External Wall South East 0 0 Side Elev External Wall South West 0 0

Overshading: Average or unknown

Opaque Elements:

Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>ts</u>						
External Wall	41.96	18.79	23.17	0.13	0	False	14
Wall to Corridor	4.99	2.12	2.87	0.26	0.43	False	14
Wall to Bin Store S	Services16.23	0	16.23	0.26	0	False	14
Roof to Terrace	4.38	0	4.38	0.14	0		9
Ground Floor	23.71			0.11			110
Exposed Floor ove	r corrid 23.Bih stor	e		0.11			75
Internal Element	<u>:S</u>						
IW	145.97						9
Party Elements							
Party Wall	20.74						20

SAP Input

 Party Ceiling
 62.77

 Party Floor
 20.23

 40

nor	mal	nr	i ra ra	മ
		- 1	Illula	

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.1625

Length	Psi-value		
9.19	0.3	E2	Other lintels (including other steel lintels)
5.45	0.04	E3	Sill
36.26	0.05	E4	Jamb
11.15	0.16	E5	Ground floor (normal)
1.95	0.32	E20	Exposed floor (normal)
16.8	0.32	E21	Exposed floor (inverted)
36.24	0.07	E7	Party floor between dwellings (in blocks of flats)
4.54	0.28	E15	Flat roof with parapet
5.12	0.09	E16	Corner (normal)
2.56	0.06	E18	Party wall between dwellings
2.56	0.12	E25	Staggered party wall between dwellings c
8.1	0	P3	Intermediate floor between dwellings (in blocks of flats)
8.1	0.16	P7	Exposed floor (normal)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Centralised whole house extract

Number of wet rooms: Kitchen + 2

Ductwork: , rigid

Approved Installation Scheme: False

Number of chimneys:0Number of open flues:0Number of fans:0Number of passive stacks:0Number of sides sheltered:2Pressure test:5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 440, product index 017558) Efficiency: Winter 86.7 % Summer: 90.0

Brand name: Worcester Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi boiler) Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Programmer, room thermostat and TRVs

Control code: 2106

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901

SAP Input

Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.98
Tilt of collector: Horizontal
Overshading: None or very little
Collector Orientation: South

Assess Zero Carbon Home: No

User Details: Aymon Winter STRO014511 Assessor Name: Stroma Number: Stroma FSAP 2012 **Software Version: Software Name:** Version: 1.0.4.16 Property Address: 01-19-73120 B-G-03 PL1 B-G-03, 49-51 Beulah Hill Address: 1. Overall dwelling dimensions: Av. Height(m) Area(m²) Volume(m³) Ground floor 67.15 (1a) x 2.56 (2a) =171.9 (3a) Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)67.15 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =171.9 (5)other total main secondary m³ per hour heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 0 0 0 0 (6b) Number of intermittent fans x 10 =(7a)0 0 x 10 =Number of passive vents (7b)0 0 x 40 =Number of flueless gas fires 0 (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)0 Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)Λ if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 0 (13)Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =n (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor 0.21 (21)Infiltration rate modified for monthly wind speed Jan Feb Jul Sep Oct Mar Apr May Jun Aug Nov Dec Monthly average wind speed from Table 7 (22)m =4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4

1.1

1.08

0.95

0.95

0.92

1

1.08

1.12

1.18

1.23

1.25

(22a)m

1.27

Adjusted infiltration rate (allowing for shelter	r and wind spe	eed) = (21a) x	(22a)m					
0.27 0.27 0.26 0.23 0.		0.2 0.2	0.21	0.23	0.24	0.25		
Calculate effective air change rate for the a If mechanical ventilation:	pplicable case	9				Г	0.5	7(220)
If exhaust air heat pump using Appendix N, (23b) =	(23a) × Fmv (eq	uation (N5)) othe	erwise (23h	n) = (23a)		l T	0.5	(23a)
If balanced with heat recovery: efficiency in % allow) (20u)		I I	0.5	(23b)
a) If balanced mechanical ventilation with	· ·	,	,	2h)m + (2:	3h) v [1 (23c)	0 ÷ 1001	(23c)
·) 0	0 0	0	0	0 0	0	÷ 100j	(24a)
b) If balanced mechanical ventilation with								()
· · · · · · · · · · · · · · · · · · ·	0	0 0	0	0	0	0		(24b)
c) If whole house extract ventilation or po	sitive input ve	ntilation from	outside					
if (22b)m < 0.5 × (23b), then (24c) =	•			.5 × (23b)				
(24c)m= 0.52 0.52 0.51 0.5 0	5 0.5	0.5 0.5	0.5	0.5	0.5	0.5		(24c)
d) If natural ventilation or whole house point (22b)m = 1, then (24d)m = (22b)m				0.5]				
(24d)m= 0 0 0 0	0	0 0	0	0	0	0		(24d)
Effective air change rate - enter (24a) or	(24b) or (24c)	or (24d) in bo	x (25)					
(25)m= 0.52 0.52 0.51 0.5 0	5 0.5	0.5 0.5	0.5	0.5	0.5	0.5		(25)
3. Heat losses and heat loss parameter:		•						
ELEMENT Gross Openings area (m²) m²	Net Area A ,m²			A X U (W/K)	k-value kJ/m²·k		
Doors					, 			(26)
D0018	2.12	X 1.4	=	2.968	- 1			(26)
Windows Type 1	10.47	X 1.4 X1/[1/(1.4)-		13.88	<u> </u> 			(27)
		= -	+ 0.04] =					, ,
Windows Type 1	10.47	x1/[1/(1.4)-	+ 0.04] = + 0.04] =	13.88		110	2608.1	(27)
Windows Type 1 Windows Type 2	10.47 8.32	x1/[1/(1.4)-	+ 0.04] = + 0.04] =	13.88		110 75	2608.1 1740.75	(27)
Windows Type 1 Windows Type 2 Floor Type 1	10.47 8.32 23.71	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11	+ 0.04] = + 0.04] = = = = =	13.88 11.03 2.6081				(27) (27) (28)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2	10.47 8.32 23.71 23.21	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11	+ 0.04] = + 0.04] = = = = = = =	13.88 11.03 2.6081 2.5531		75	1740.75	(27) (27) (28) (28)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79	10.47 8.32 23.71 23.21 23.17	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13	+ 0.04] = + 0.04] = = = = = = =	13.88 11.03 2.6081 2.5531 3.01		75 14	1740.75 324.38	(27) (27) (28) (28) (28)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12	10.47 8.32 23.71 23.21 23.17 2.87	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23	+ 0.04] = + 0.04] = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67		75 14 14	1740.75 324.38 40.18	(27) (27) (28) (28) (28) (29)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0	10.47 8.32 23.71 23.21 23.17 2.87 16.23	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26	+ 0.04] = + 0.04] = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22		75 14 14 14	1740.75 324.38 40.18 227.22	(27) (27) (28)](28)](29)](29)](29)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 Walls Type2 4.99 Walls Type3 16.23 Roof 4.38	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26	+ 0.04] = + 0.04] = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22		75 14 14 14	1740.75 324.38 40.18 227.22	(27) (27) (28) (28) (29) (29) (29) (30)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m²	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26 x 0.14	+ 0.04] = + 0.04] = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61		75 14 14 14 14 9	1740.75 324.38 40.18 227.22 39.42	(27) (27) (28) (28) (29) (29) (29) (30) (31)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26 x 0.14	+ 0.04] = + 0.04] = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61		75 14 14 14 14 9	1740.75 324.38 40.18 227.22 39.42	(27) (27) (28) (28) (29) (29) (29) (30) (31) (32)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall Party floor	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74 20.23	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26 x 0.14	+ 0.04] = + 0.04] = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61		75 14 14 14 19 20 40	1740.75 324.38 40.18 227.22 39.42 414.8 809.2	(27) (27) (28) (28) (29) (29) (29) (30) (31) (32) (32a) (32b)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall Party floor Party ceiling Internal wall ** * for windows and roof windows, use effective windows	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74 20.23 62.77 145.97	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26 x 0.14	+ 0.04] = + 0.04] = = = = = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61] [75 14 14 14 9 20 40 30 9	1740.75 324.38 40.18 227.22 39.42 414.8 809.2 1883.1 1313.73	(27) (27) (28) (28) (29) (29) (29) (30) (31) (32) (32a) (32b)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall Party floor Party ceiling Internal wall ** * for windows and roof windows, use effective windows** include the areas on both sides of internal walls and	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74 20.23 62.77 145.97	x1/[1/(1.4)- x1/[1/(1.4)- x	= 0.04] = = = = = = = = = = = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61] [[] [[[[[[[[[[[[[[[[75 14 14 14 9 20 40 30 9	1740.75 324.38 40.18 227.22 39.42 414.8 809.2 1883.1 1313.73 3.2	(27) (27) (28) (28) (29) (29) (30) (31) (32) (32a) (32b)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall Party floor Party ceiling Internal wall ** * for windows and roof windows, use effective window ** include the areas on both sides of internal walls and Fabric heat loss, W/K = S (A x U)	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74 20.23 62.77 145.97	x1/[1/(1.4)- x1/[1/(1.4)- x	+ 0.04] = + 0.04] = = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61 0		75 14 14 14 9 20 40 30 9 paragraph	1740.75 324.38 40.18 227.22 39.42 414.8 809.2 1883.1 1313.73 3.2	(27) (27) (28) (28) (29) (29) (30) (31) (32) (32a) (32b) (332)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall Party floor Party ceiling Internal wall ** * for windows and roof windows, use effective window ** include the areas on both sides of internal walls and Fabric heat loss, W/K = S (A x U) Heat capacity Cm = S(A x k)	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74 20.23 62.77 145.97 4 U-value calculated partitions	x1/[1/(1.4)- x1/[1/(1.4)- x	+ 0.04] = = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61 0		75 14 14 14 9 20 40 30 9 paragraph	1740.75 324.38 40.18 227.22 39.42 414.8 809.2 1883.1 1313.73 3.2 41.56 9400.88	(27) (27) (28) (28) (29) (29) (29) (30) (31) (32) (32a) (32b) (32c)
Windows Type 1 Windows Type 2 Floor Type 1 Floor Type 2 Walls Type1 41.96 18.79 Walls Type2 4.99 2.12 Walls Type3 16.23 0 Roof 4.38 0 Total area of elements, m² Party wall Party floor Party ceiling Internal wall ** * for windows and roof windows, use effective window ** include the areas on both sides of internal walls and Fabric heat loss, W/K = S (A x U)	10.47 8.32 23.71 23.21 23.17 2.87 16.23 4.38 114.48 20.74 20.23 62.77 145.97 4 U-value calculated partitions A) in kJ/m²K	x1/[1/(1.4)- x1/[1/(1.4)- x 0.11 x 0.11 x 0.13 x 0.23 x 0.26 x 0.14 x 0.14 (26)(30	+ 0.04] = + 0.04] = = = = = = = = = =	13.88 11.03 2.6081 2.5531 3.01 0.67 4.22 0.61 0 ue)+0.04] as (30) + (32)) ÷ (4) =	+ (32a).	75 14 14 14 9 20 40 30 9 paragraph(32e) = [1740.75 324.38 40.18 227.22 39.42 414.8 809.2 1883.1 1313.73 3.2	(27) (27) (28) (28) (29) (29) (30) (31) (32) (32a) (32b) (332)

can be used instead of a detailed calculation Thermal bridges: S (L x Y) calculated using Appendix K (36)18.6 if details of thermal bridging are not known (36) = $0.15 \times (31)$ Total fabric heat loss (33) + (36) =(37)60.15 Ventilation heat loss calculated monthly (38)m = $0.33 \times (25)$ m x (5)Feb Jul Aug Sep Dec .lan Mar Apr May Jun Oct Nov (38)m =29.55 29.25 28.95 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 (38)Heat transfer coefficient, W/K (39)m = (37) + (38)m (39)m =89.71 89.4 89.1 88.52 88.52 88.52 88.52 88.52 88.52 88.52 88.52 88.52 (39)Average = Sum(39)_{1...12} /12= 88.74 Heat loss parameter (HLP), W/m²K (40)m = (39)m ÷ (4)1.32 (40)m=1.34 1.33 1.33 1 32 1 32 1 32 1 32 1.32 1.32 1 32 (40)Average = Sum(40)_{1...12} /12= 1.32 Number of days in month (Table 1a) Jan Feb Mar Sep Dec Apr May Jun Jul Aug Oct Nov (41)31 28 31 30 31 30 31 31 30 31 31 (41)m =4. Water heating energy requirement: kWh/year: Assumed occupancy, N (42)2.17 if TFA > 13.9, N = 1 + 1.76 x [1 - $\exp(-0.000349 \times (TFA - 13.9)2)] + 0.0013 \times (TFA - 13.9)$ if TFA £ 13.9, N = 1Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 (43)85.86 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m =94.44 91.01 87.57 84.14 80.7 77.27 77.27 80.7 84.14 87.57 91.01 94.44 (44)Total = Sum(44)_{1 12} = 1030.27 Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) 140.05 135.64 (45)m =122.49 126.4 110.2 105.74 91.24 84.55 97.02 98.18 114.42 124.9 (45)Total = $Sum(45)_{1...12}$ = 1350.85 If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 21.01 18.37 18.96 16.53 15.86 13.69 12.68 14.55 14.73 17.16 18.74 20.35 (46)Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)Temperature factor from Table 2b 0 (49)Energy lost from water storage, kWh/year $(48) \times (49) =$ (50)0 b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)If community heating see section 4.3 Volume factor from Table 2a (52)0 Temperature factor from Table 2b (53)0

Energy lost from water storage, kWh/year Enter (50) or (54) in (55)	$(47) \times (51) \times (52) \times (53) = 0 $ $0 $ (54) $0 $ (55)					
Water storage loss calculated for each month	$((56)m = (55) \times (41)m$		<u></u>	(==)		
(56)m= 0 0 0 0 0 0	0 0	0 0	0	(56)		
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷	(50), else (57)m = (56)m w	vhere (H11) is fror	m Appendi	хH		
(57)m= 0 0 0 0 0 0	0 0	0 0	0	(57)		
Primary circuit loss (annual) from Table 3		()	(58)		
Primary circuit loss calculated for each month (59)m = (58) ÷	` '					
(modified by factor from Table H5 if there is solar water hea	, , , , , , , , , , , , , , , , , , , 	 		(50)		
(59)m= 0 0 0 0 0 0 0	0 0	0 0	0	(59)		
Combi loss calculated for each month (61)m = (60) ÷ 365 × (4						
(61)m= 35.76 32.27 35.68 34.47 35.58 34.39 35.5		5.64 34.55	35.74	(61)		
Total heat required for water heating calculated for each month	$h (62)m = 0.85 \times (45)$)m + (46)m + ((57)m +	. , . ,		
(62)m= 175.81 154.76 162.08 144.67 141.32 125.63 120.00		50.06 159.45	171.38	(62)		
Solar DHW input calculated using Appendix G or Appendix H (negative quan		ntribution to wate	r heating)			
(add additional lines if FGHRS and/or WWHRS applies, see A	``			(62)		
(63)m= 0 0 0 0 0 0 0	0 0	0 0	0	(63)		
Output from water heater			4=4.00			
(64)m= 175.81 154.76 162.08 144.67 141.32 125.63 120.06		50.06 159.45	171.38	1770 11		
	Output from water	,		1770.41 (64)		
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45)	m + (61)m] + 0.8 x [(4	46)m + (5/)m	+ (59)m			
(95)	1 1		<u> </u>	-		
(65)m= 55.51 48.8 50.95 45.26 44.05 38.94 36.99		6.95 50.17	54.03	(65)		
include (57)m in calculation of (65)m only if cylinder is in the		6.95 50.17	54.03	(65)		
		6.95 50.17	54.03	(65)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	dwelling or hot water	6.95 50.17 er is from comm	54.03 munity h	(65)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	e dwelling or hot water	6.95 50.17 er is from comm	54.03 munity h	eating		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5 130.5 130.5 130.5 130.5 130.5	Aug Sep 0	6.95 50.17 er is from comm	54.03 munity h	(65)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5 130.5 130.5 130.5 130.5 130.5 130.5 Lighting gains (calculated in Appendix L, equation L9 or L9a),	Aug Sep 0 130.5 130.5 13 also see Table 5	6.95 50.17 er is from common	54.03 munity h	eating (65)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130.5 130.5 130.5 20.59 27.63 38	Oct Nov 30.5 130.5 40.95	54.03 munity h	eating		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130.5 130.5 20.59 27.63 3813a), also see Table	Oct Nov 30.5 130.5 5	54.03 munity h	(65) eating (66) (67)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130.5 130.5 130.5 20.59 27.63 3813a), also see Table 209.82 217.26 23	Oct Nov 30.5 130.5 40.95	54.03 munity h	eating (65)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08	Dec 130.5 43.65 271.86	(65) eating (66) (67) (68)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5	54.03 munity h	(65) eating (66) (67)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan	Aug Sep 0 130.5 130.5 13 also see Table 5 20.59 27.63 38 13a), also see Table 209.82 217.26 23 a), also see Table 5 50.22 50.22 50	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08 60.22 50.22	Dec 130.5 43.65 271.86 50.22	(65) eating (66) (67) (68)		
include (57)m in calculation of (65)m only if cylinder is in the first section of (55)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m. Metabolic gains (Table 5), Watts Metabolic gains (Table 5), Watts May Jun Jul (66)m= 130.5	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08	Dec 130.5 43.65 271.86	(65) eating (66) (67) (68)		
include (57)m in calculation of (65)m only if cylinder is in the state of the state	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08 6.22 50.22 3 3	54.03 munity h	(65) eating (66) (67) (68) (69) (70)		
include (57)m in calculation of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m only if cylinder is in the first section of (65)m. Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08 60.22 50.22	Dec 130.5 43.65 271.86 50.22	(65) eating (66) (67) (68)		
include (57)m in calculation of (65)m only if cylinder is in the state of the state	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08 6.22 50.22 3 3	54.03 munity h	(65) eating (66) (67) (68) (69) (70)		
include (57)m in calculation of (65)m only if cylinder is in the second	Aug Sep (130.5 130	Oct Nov 30.5 130.5 5.08 40.95 5 33.09 253.08 6.22 50.22 3 3	54.03 munity h	(65) eating (66) (67) (68) (69) (70)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130	Oct Nov 30.5 130.5 55.08 40.95 5 33.09 253.08 30.22 50.22 3 3 -87 -87 33.11 69.68	54.03 munity h Dec 130.5 43.65 271.86 50.22 3 -87	(65) eating (66) (67) (68) (69) (70)		
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 130.5	Aug Sep (130.5 130	Oct Nov 30.5 130.5 55.08 40.95 5 33.09 253.08 30.22 50.22 3 3 -87 -87 33.11 69.68	54.03 munity h Dec 130.5 43.65 271.86 50.22 3 -87	(65) eating (66) (67) (68) (69) (70)		

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Fa	ıctor	Area m²			Flu Tal	x ole 6a			g_ ıble 6b		Tab	FF le 6c			Gains (W)	
Southeast 0.9x	0.77	х	10.	47	Х	3	6.79	х		0.4	х		0.8		=	85.43	(77)
Southeast 0.9x	0.77	х	10.	47	Х	6	2.67	х		0.4	X		0.8		=	145.52	(77)
Southeast 0.9x	0.77	х	10.	47	Х	8	5.75	х		0.4	X		0.8		=	199.1	(77)
Southeast 0.9x	0.77	x	10.	47	X	10	06.25	х		0.4	X		0.8		=	246.7	(77)
Southeast 0.9x	0.77	х	10.	47	X	1	19.01	х		0.4	X		0.8		=	276.32	(77)
Southeast 0.9x	0.77	х	10.	47	X	1	18.15	х		0.4	X		0.8		=	274.32	(77)
Southeast 0.9x	0.77	x	10.	47	X	1	13.91	х		0.4	X		0.8		=	264.48	(77)
Southeast 0.9x	0.77	x	10.	47	X	10	04.39	х		0.4	X		0.8		=	242.38	(77)
Southeast 0.9x	0.77	x	10.	47	Х	9	2.85	х		0.4	x		0.8		=	215.59	(77)
Southeast 0.9x	0.77	x	10.	47	X	6	9.27	х		0.4	X		0.8		=	160.83	(77)
Southeast 0.9x	0.77	х	10.	47	X	4	4.07	х		0.4	X		0.8		=	102.32	(77)
Southeast 0.9x	0.77	x	10.	47	X	3	1.49	х		0.4	X		0.8		=	73.11	(77)
Southwest _{0.9x}	0.54	x	8.3	2	X	3	6.79			0.4	X		0.8		=	47.61	(79)
Southwest _{0.9x}	0.54	х	8.3	2	X	6	2.67			0.4	X		0.8		=	81.09	(79)
Southwest _{0.9x}	0.54	x	8.3	2	X	8	5.75			0.4	X		0.8		=	110.96	(79)
Southwest _{0.9x}	0.54	x	8.3	2	Х	10	06.25			0.4	X		0.8	一	=	137.48	(79)
Southwest _{0.9x}	0.54	х	8.3	2	X	1	19.01			0.4	X		0.8	一	=	153.99	(79)
Southwest _{0.9x}	0.54	x	8.3	2	Х	1	18.15			0.4	= x		0.8	一	=	152.88	(79)
Southwest _{0.9x}	0.54	x	8.3	2	Х	1	13.91			0.4	X		0.8		=	147.39	(79)
Southwest _{0.9x}	0.54	x	8.3	2	Х	10	04.39			0.4	X		0.8		=	135.07	(79)
Southwest _{0.9x}	0.54	×	8.3	2	X	9	2.85			0.4	T x		0.8		=	120.14	(79)
Southwest _{0.9x}	0.54	x	8.3	2	X	6	9.27			0.4	X		0.8		=	89.63	(79)
Southwest _{0.9x}	0.54	x	8.3	2	X	4	4.07			0.4	= x		0.8		=	57.02	(79)
Southwest _{0.9x}	0.54	×	8.3	2	X	3	1.49			0.4	= x		0.8		=	40.74	(79)
											_				'		
Solar gains in (83)m= 133.04		culated 310.06	for eacl	1 month 430.31	$\overline{}$	127.2	411.87	(83)m 377		m(74)m . 335.73	(82)n 250.4	\neg	159.35	113	0.5	1	(83)
(83)m= 133.04 Total gains –								3//	.45	333.73	250.4	ю	159.55	113	.00		(00)
(84)m= 631.2		785.87	831.08	847.72	Ť	17.98	786.92	759	89	734.64	678.4	17 6	619.78	598	.72		(84)
` ′		!				17.00	700.02	700	.00	704.04	070.	, ,	710.70	000	2		(0.)
7. Mean into			`				T . I	1. 0	TL 4	(00)							7(05)
Temperatur	ŭ	0.			•			ole 9	, In1	(°C)						21	(85)
Utilisation fa					Ť			Δ.		0			Nim				
Jan		Mar	Apr	May	+	Jun	Jul	_	ug	Sep	Oc	_	Nov		ec		(96)
(86)m= 0.95	0.93	0.9	0.83	0.74		0.6	0.46	0.4	19	0.68	0.85	<u> </u>	0.93	0.9	96		(86)
Mean intern				`	_			ī —								İ	
(87)m= 19.17	19.43	19.8	20.23	20.59	2	20.84	20.95	20.	93	20.77	20.2	9	19.66	19.	13		(87)
Temperatur	e during he	ating p	eriods ir	rest of	fdw	elling	from Ta	ble 9	9, Th	2 (°C)						•	
(88)m= 19.81	19.82	19.82	19.83	19.83	1	9.83	19.83	19.	83	19.83	19.8	3	19.83	19.	83		(88)
Utilisation fa	actor for gai	ins for r	est of d	welling,	h2,	,m (se	e Table	9a)									
(89)m= 0.94	0.92	0.88	0.8	0.68	(0.52	0.35	0.3	38	0.6	0.81		0.92	0.9	95		(89)
																•	

Mean interna	al temper	ature in	the rest	of dwelli	ng T2 (fo	ollow ste	ps 3 to 1	7 in Tabl	le 9c)				
(90)m= 18.19	18.44	18.8	19.21	19.54	19.74	19.81	19.8	19.69	19.28	18.68	18.16		(90)
								1	fLA = Livin	g area ÷ (4	1) =	0.42	(91)
Mean interna	al temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m= 18.6	18.86	19.22	19.63	19.98	20.2	20.28	20.27	20.14	19.71	19.09	18.56		(92)
Apply adjust	ment to t	he mean	internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m= 18.45	18.71	19.07	19.48	19.83	20.05	20.13	20.12	19.99	19.56	18.94	18.41		(93)
8. Space he	ating requ	uirement											
Set Ti to the the utilisation			•		ed at ste	ep 11 of	Table 9l	b, so tha	it Ti,m=(76)m an	d re-calc	ulate	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fa	ctor for g	ains, hm	<u> </u>	,									
94)m= 0.93	0.9	0.86	0.79	0.68	0.53	0.38	0.41	0.61	0.8	0.9	0.94		(94)
Useful gains	, hmGm	, W = (94	1)m x (8	4)m					•				
(95)m= 587.81	651.19	676.58	657.22	579.68	435.43	300.26	313.41	447.64	544.67	558.91	562.14		(95)
Monthly ave	rage exte	rnal tem	perature	from Ta	able 8				•				
96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rat	te for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
97)m= 1269.4	1234.4	1119.76	936.88	719.66	482.61	312.78	329.68	521.17	792.68	1048.12	1258.26		(97)
Space heating	ng require	ement fo	r each n	nonth, k\	Wh/mont	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
98)m= 507.1	391.92	329.73	201.35	104.15	0	0	0	0	184.52	352.23	517.91		
							Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	2588.91	(98)
Space heatii	ng require	ement in	kWh/m²	²/year							Ī	38.55	(99)
9a. Energy re	guiremer	nts – Indi	vidual h	eating s	vstems i	ncludina	micro-C	CHP)			L		
Space heati					,			, ,					
Fraction of s	•	at from se	econdar	y/supple	mentary	system						0	(201
Fraction of s	bace hea	at from m	ıain svst	em(s)			(202) = 1 -	- (201) =			İ	1	(202
Fraction of to			-	. ,			(204) = (2	02) × [1 –	(203)1 =		l I	1	(204
		Ü	•				(== -) (=	/ [:	(===/1		l I		՝
Efficiency of			0 ,								ļ	90	(206
Efficiency of	seconda	ry/supple	ementar 	y heatin	g system	າ, %						0	(208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space heating	ng require	ement (c	alculate	d above)								
507.1	391.92	329.73	201.35	104.15	0	0	0	0	184.52	352.23	517.91		
(211)m = {[(98	8)m x (20	(4)] } x 1	00 ÷ (20	06)									(211
563.45	435.47	366.36	223.72	115.72	0	0	0	0	205.02	391.37	575.46		
				-	-		Tota	l (kWh/yea	ar) =Sum(2	211),5,1012	=	2876.57	(211
			v) k\//h/	month							,		_
Space heating	ng fuel (s	econdar	y /, r. v V I I /										
•	•		• , .										
= {[(98 <u>)</u> m x (2	•		• , .	0	0	0	0	0	0	0	0		
= {[(98 <u>)</u> m x (2	201)] } x 1	00 ÷ (20	8)		0	0			0 ar) =Sum(2			0	(215
= {[(98 <u>)</u> m x (2	201)] } x 1	00 ÷ (20	8)		0	0						0	(215
= {[(98)m x (2 215)m= 0	201)] } x 1	00 ÷ (20	0	0	0	0						0	(215
= {[(98)m x (2 215)m= 0	201)] } x 1	00 ÷ (20	0	0	0 125.63	0 120.06						0	(215

(217)m= 89.13 89.04 88.89	88.59	88.07	86.7	86.7	86.7	86.7	88.49	88.95	89.16	1	(217)
Fuel for water heating, kWh/mo			00.7	00.7	00.7	00.7	00.40	00.00	00.10	J	(=)
(219) m = (64) m x $100 \div (217)$	m									1	
(219)m= 197.26 173.81 182.34	163.3	160.46	144.9	138.47	152.92	152.96	169.58	179.27	192.22		1
Annual totala					TOLA	ıl = Sum(2		Mb/voor		2007.5	(219)
Annual totals Space heating fuel used, main	system	1					K	Wh/year		kWh/year 2876.57	1
Water heating fuel used	•									2007.5	i
Electricity for pumps, fans and	electric l	keep-ho	t								J
mechanical ventilation - balan	iced, exti	ract or p	ositive ii	nput fron	n outside	Э			44.04]	(230a)
central heating pump:									30		(230c)
boiler with a fan-assisted flue									45]	(230e)
Total electricity for the above, k	κWh/yea	r			sum	of (230a).	(230g) =			119.04	(231)
Electricity for lighting										300.02	(232)
Electricity generated by PVs										-745.28	(233)
10a. Fuel costs - individual he	eating sys	stems:									
			Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space heating - main system 1			(21	1) x			3.4	8	x 0.01 =	100.1	(240)
Space heating - main system 2	2		(213	3) x			0		x 0.01 =	0	(241)
Space heating - secondary			(21	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (other fuel)			(219	9)			3.4	8	x 0.01 =	69.86	(247)
Pumps, fans and electric keep-	-hot		(23	1)			13.	19	x 0.01 =	15.7	(249)
(if off-peak tariff, list each of (2) Energy for lighting	30a) to (2	230g) se	eparately (232		licable a	nd apply	fuel pri		rding to - x 0.01 =	Table 12a 39.57	(250)
Additional standing charges (T	able 12)									120	(251)
			one	of (233) to	o (235) x)		13.	19	x 0.01 =	0	(252)
Appendix Q items: repeat lines	(253) ar	nd (254)	as need	ded				_			
Total energy cost			247) + (25	0)(254)	=					345.24	(255)
11a. SAP rating - individual he	eating sy	stems									
Energy cost deflator (Table 12))									0.42	(256)
Energy cost factor (ECF)		[(255) x	(256)] ÷ [(4) + 45.0]	=					1.29	(257)
SAP rating (Section 12)										81.96	(258)
12a. CO2 emissions – Individ	ual heati	ng syste	ems inclu	uding mi	cro-CHF)					
				ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ır
Space heating (main system 1)		(21	1) x			0.2	16	=	621.34	(261)

Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	433.62	(264)
Space and water heating	(261) + (262) + (263) + (264) =			1054.96	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	61.78	(267)
Electricity for lighting	(232) x	0.519	=	155.71	(268)
Energy saving/generation technologies					_
Item 1		0.519	=	-386.8	(269)
Total CO2, kg/year	sum	of (265)(271) =		885.65	(272)
CO2 emissions per m²	(272	(4) ÷ (4) =		13.19	(273)
El rating (section 14)				89	(274)

13a. Primary Energy

	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	3509.42 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2449.15 (264)
Space and water heating	(261) + (262) + (263) + (264) =		5958.56 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	365.46 (267)
Electricity for lighting	(232) x	0 =	921.05 (268)
Energy saving/generation technologies			
Item 1		3.07	-2288.02 (269)
'Total Primary Energy	sum	of (265)(271) =	4957.06 (272)
Primary energy kWh/m²/year	(272	(4) ÷ (4) =	73.82 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 25 March 2019

Property Details: 01-19-73120 B-G-03 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No Number of storeys: 1

Front of dwelling faces: North West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 140

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
2 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 113.46 (P1)

Transmission heat loss coefficient: 60.2

Summer heat loss coefficient: 173.61 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

South East (Rear Elev) 0 1 South West (Side Elev) 0 1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overnangs:	Z summer:	
South East (Rear Elev)	0.85	0.9	1	0.76	(P8)
South West (Side Elev)	1	0.7	1	0.7	(P8)

Solar gains:

Orientation		Area	Flux	g_	FF	Shading	Gains
South East (Rear Elev)	0.9 x	10.47	119.92	0.4	0.8	0.76	276.63
South West (Side Elev)	0.7 x	8.32	119.92	0.4	0.8	0.7	201.15
						Total	477.78 (P3/P4)

Internal gains:

	June	July	August
Internal gains	387.78	372.05	379.44
Total summer gains	889.33	849.83	825.15 (P5)
Summer gain/loss ratio	5.12	4.9	4.75 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	1.02	1.02	1.02
Threshold temperature	22.14	23.82	23.57 (P7)
Likelihood of high internal temperature	Medium	High	High

Assessment of likelihood of high internal temperature: High